Search results for "Hexanoic acid"

showing 10 items of 24 documents

Production of Nano-Sized Co<sub>3</sub>O<sub>4</sub> by Pyrolysis of Organic Extracts

2016

The most promising application field of materials based on nano-sized Co3O4 is catalysis. The method of production is one of the factors, which greatly affects the catalytic activity of Co3O4 catalysts. The aim of this research is to study possibilities of a new promising extractive-pyrolytic method (EPM) for the production of Co3O4 nanopowders and silica- and ceria-supported Co3O4 nanocomposites. Solutions of cobalt hexanoate in hexanoic acid and trioctylammonium tetrachlorocobaltate in toluene preliminary produced by solvent extraction were used as precursors. The precursors’ thermal stability, phase composition, morphology and the magnetic properties of the final products of pyrolysis we…

010302 applied physicsHexanoic acidNanocompositeMaterials scienceMechanical EngineeringInorganic chemistrychemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesTolueneCatalysischemistry.chemical_compoundChemical engineeringchemistryMechanics of Materials0103 physical sciencesGeneral Materials ScienceThermal stabilityCrystallite0210 nano-technologyCobaltPyrolysisKey Engineering Materials
researchProduct

Identification of Stress Associated microRNAs in Solanum lycopersicum by High-Throughput Sequencing

2019

Tomato (Solanum lycopersicum) is one of the most important crops around the world and also a model plant to study response to stress. High-throughput sequencing was used to analyse the microRNA (miRNA) profile of tomato plants undergoing five biotic and abiotic stress conditions (drought, heat, P. syringae infection, B. cinerea infection, and herbivore insect attack with Leptinotarsa decemlineata larvae) and one chemical treatment with a plant defence inducer, hexanoic acid. We identified 104 conserved miRNAs belonging to 37 families and we predicted 61 novel tomato miRNAs. Among those 165 miRNAs, 41 were stress-responsive. Reverse transcription quantitative PCR (RT-qPCR) was used to valida…

0106 biological sciences0301 basic medicineEstrèslcsh:QH426-470ATP-binding cassette transporter01 natural sciencesbehavioral disciplines and activitiesDNA sequencingdifferential expression03 medical and health sciencesDifferential expressionSolanum lycopersicummicroRNAGeneticsTomàquetsGeneGenetics (clinical)Abiotic componentGeneticsbiotic and abiotic stress responseHigh-throughput sequencingbiologyAbiotic stressfungi<i>Solanum lycopersicum</i>food and beverageshigh-throughput sequencingbiology.organism_classificationlcsh:Genetics030104 developmental biologyReal-time polymerase chain reactionmiRNAsBiotic and abiotic stress responseSolanumHexanoic acidhexanoic acidmiRNA targets010606 plant biology & botanyGenes
researchProduct

Colorado potato beetle chymotrypsin genes are differentially regulated in larval midgut in response to the plant defense inducer hexanoic acid or the…

2019

When Colorado potato beetle larvae ingested potato plants treated with the plant defense inducer compound hexanoic acid, midgut chymotrypsin enzyme activity increased, and the corresponding chymotrypsin genes were differentially expressed, evidence of the larval digestive proteolytic system's plasticity. We previously reported increased susceptibility to Cry3Aa toxin in larvae fed hexanoic acid treated plants. Here we show that the most expressed chymotrypsin gene in larvae fed hexanoic acid treated plants, CTR6, was dramatically downregulated in Cry3Aa intoxicated larvae. lde-miR-965-5p and lde-miR-9a-5p microRNAs, predicted to target CTR6, might be involved in regulating the response to h…

0106 biological sciences0301 basic medicineGenes Insectmedicine.disease_cause01 natural sciencesMicrobiologyHemolysin Proteins03 medical and health scienceschemistry.chemical_compoundBacterial ProteinsBacillus thuringiensisPlant defense against herbivorymedicineAnimalsChymotrypsinCaproatesEcology Evolution Behavior and SystematicsSolanum tuberosumHexanoic acidChymotrypsinBacillus thuringiensis ToxinsbiologyToxinfungiColorado potato beetlefood and beveragesMidgutbiology.organism_classificationEnzyme assayColeopteraEndotoxins010602 entomology030104 developmental biologyGene Expression RegulationchemistryLarvabiology.proteinDigestive SystemJournal of Invertebrate Pathology
researchProduct

Hexanoic Acid Treatment Prevents Systemic MNSV Movement in Cucumis melo Plants by Priming Callose Deposition Correlating SA and OPDA Accumulation

2017

Unlike fungal and bacterial diseases, no direct method is available to control viral diseases. The use of resistance-inducing compounds can be an alternative strategy for plant viruses. Here we studied the basal response of melon to Melon necrotic spot virus (MNSV) and demonstrated the efficacy of hexanoic acid (Hx) priming, which prevents the virus from systemically spreading. We analysed callose deposition and the hormonal profile and gene expression at the whole plant level. This allowed us to determine hormonal homeostasis in the melon roots, cotyledons, hypocotyls, stems and leaves involved in basal and hexanoic acid-induced resistance (Hx-IR) to MNSV. Our data indicate important roles…

0106 biological sciences0301 basic medicineMelonsalicylic acidPlant Sciencelcsh:Plant culture01 natural sciencesHypocotylMicrobiologyOPDA03 medical and health scienceschemistry.chemical_compoundCucumis meloPlant viruslcsh:SB1-1110Original ResearchHexanoic acidPriming by natural compoundsbiologyMelon necrotic spot virusCallosefood and beveragesSalicylic acidbiology.organism_classificationpriming by natural compounds030104 developmental biologychemistryBiochemistryMNSVhexanoic acidHexanoic acidCucumisSalicylic acid010606 plant biology & botany
researchProduct

Oxylipin mediated stress response of a miraculin-like protease inhibitor in Hexanoic acid primed eggplant plants infested by Colorado potato beetle

2017

Insect-plant interactions are governed by a complex equilibrium between the mechanisms through which plant recognize insect attack and orchestrate downstream signaling events that trigger plant defense responses, and the mechanisms by which insects overcome plant defenses. Due to this tight and dynamic interplay, insight into the nature of the plant defense response can be gained by analyzing changes in the insect herbivores digestive system upon plant feeding. In this work we have identified a Solanum melongena miraculin-like protease inhibitor in the midgut juice of Colorado potato larvae feeding on eggplant plants treated with the natural inducer of plant defenses hexanoic acid. We analy…

0106 biological sciences0301 basic medicinePhysiologyMiraculinPlant ScienceEggplant01 natural sciences03 medical and health scienceschemistry.chemical_compoundGene Expression Regulation PlantBotanyPlant defense against herbivoryAnimalsColorado potato beetleProtease InhibitorsOxylipinsSolanum melongenaCaproatesMiraculin-like proteinHexanoic acidbiologyColorado potato beetlefungiPlant physiologyfood and beveragesOxylipinbiology.organism_classificationCell biologyColeoptera030104 developmental biologychemistryDefense primingSolanumHexanoic acidAgronomy and Crop ScienceSolanaceae010606 plant biology & botany
researchProduct

Molecule structural factors influencing the loading of flavoring compounds in a natural-preformed capsule: Yeast cells

2016

International audience; Yeast cells are efficient microcapsules for the encapsulation of flavoring compounds. However, as they are preformed capsules, they have to be loaded with the active. Encapsulation efficiency is to a certain level correlated with LogP. In this study, the effect of structural factors on the encapsulation of amphiphilic flavors was investigated. Homological series of carboxylic acids, ethyl esters, lactones, alcohols and ketones were encapsulated into the yeast Yarrowia lipolytica. Although, in a single homological series, the length of the molecule and thus the LogP were correlated with encapsulation efficiency (EY%), big differences were observable between series. Fo…

0106 biological sciences0301 basic medicineSaccharomyces cerevisiaeCapsulesSaccharomyces-cerevisiae01 natural sciencesHexanalYeast cellDiffusion03 medical and health scienceschemistry.chemical_compoundColloid and Surface ChemistryFlavorsYeasts010608 biotechnologyAmphiphileMechanismsOrganic chemistryMoleculePhysical and Theoretical ChemistryMicroencapsulationHexanoic acidMolecular StructurebiologyToxicityMembrane[ SDV.IDA ] Life Sciences [q-bio]/Food engineeringYarrowiaSurfaces and InterfacesGeneral Medicinebiology.organism_classificationFood ingredientsOrganic-solventsYeastFlavoring AgentsMicrocapsules030104 developmental biologyMembranechemistryFunctional groupsEncapsulationDeliveryMolecule structureBiotechnology
researchProduct

Volatile components of ripe fruits of Morinda citrifolia and their effects on Drosophila

1996

Abstract The only larval resource of the specialist species, Drosophila sechellia , is ripe fruits of Morinda citrifolia . The chemical composition of this fruit, which is very toxic to most Drosophila species, was investigated and 51 compounds were abundant enough to be identified by GC-MS. The ripe fruit is characterized by a large amount of carboxylic acids, especially octanoic and hexanoic acids. The biological effects of the ripe fruit and its main acids were investigated with behavioural studies. Octanoic acid is responsible for the general toxicity of the fruit to most Drosophila species; D. sechellia is the only species which is resistant to this acid. Hexanoic acid has a unique eff…

0106 biological sciencesanimal structures[SPI.GPROC] Engineering Sciences [physics]/Chemical and Process EngineeringCarboxylic acidRubiaceaePlant ScienceHorticulture010603 evolutionary biology01 natural sciencesBiochemistryDrosophila sechellia03 medical and health scienceschemistry.chemical_compoundMorinda citrifoliaalkanoic acidsDrosophilidaeBotany[SDV.IDA]Life Sciences [q-bio]/Food engineering[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringFood scienceMolecular BiologyDrosophila030304 developmental biologychemistry.chemical_classificationHexanoic acid0303 health sciencesRubiaceaebiologyfungifood and beveragestoxicityGeneral MedicineDecanoic acid[SDV.IDA] Life Sciences [q-bio]/Food engineeringbiology.organism_classificationDrosophila melanogasterchemistryMorindavolatile components
researchProduct

Competitive Binding of Aroma Compounds by β-Cyclodextrin

2001

Retention of six aroma compounds has been studied after dehydration of ternary mixtures of aroma water and beta-cyclodextrin. A maximal retention of a mole of aroma per mole of beta-cyclodextrin has been observed for five of the aroma compounds, whereas retention of benzyl alcohol can be twice as high. Retention of a mixture of aroma compounds has also been studied. It has been noted that when volatile compounds compete for the same binding sites on beta-cyclodextrin, ethyl hexanoate, 2-methylbutyric acid, and benzyl alcohol are, respectively, better retained than ethyl propionate, hexanoic acid, and hexanol. Preferential retention observed with esters can be simply explained by their diffe…

Carboxylic AcidsAlcoholBinding Competitivechemistry.chemical_compoundEthyl propionateOrganic chemistryAromachemistry.chemical_classificationHexanoic acidCyclodextrinsCyclodextrinbiologybeta-Cyclodextrinsfood and beveragesEthyl hexanoateEstersGeneral Chemistrybiology.organism_classificationKineticsFreeze DryingchemistryBenzyl alcoholAlcoholsOdorantsGeneral Agricultural and Biological SciencesHexanolJournal of Agricultural and Food Chemistry
researchProduct

SAR-studies of γ-secretase modulators with PPARγ-agonistic and 5-lipoxygenase-inhibitory activity for Alzheimer’s disease

2014

Abstract We present the design, synthesis and biological evaluation of compounds containing a 2-(benzylidene)hexanoic acid scaffold as multi-target directed γ-secretase-modulators. Broad structural variations were undertaken to elucidate the structure–activity-relationships at the 5-position of the aromatic core. Compound 13 showed the most potent activity profile with IC50 values of 0.79 μM (Aβ42), 0.3 μM (5-lipoxygenase) and an EC50 value of 4.64 μM for PPARγ-activation. This derivative is the first compound exhibiting low micromolar to nanomolar activities for these three targets. Combining γ-secretase-modulation, PPARγ-agonism and inhibition of 5-lipoxygenase in one compound could be a …

Clinical BiochemistryPharmaceutical SciencePeroxisome proliferator-activated receptorInflammationDiseasePharmacologyInhibitory postsynaptic potentialBiochemistryStructure-Activity Relationshipchemistry.chemical_compoundAlzheimer DiseaseDrug DiscoverymedicineHumansLipoxygenase Inhibitorsγ secretaseCaproatesMolecular BiologyHexanoic acidchemistry.chemical_classificationArachidonate 5-LipoxygenasebiologyOrganic ChemistryPPAR gammachemistryBiochemistryArachidonate 5-lipoxygenasebiology.proteinMolecular MedicineAmyloid Precursor Protein Secretasesmedicine.symptomDerivative (chemistry)Bioorganic &amp; Medicinal Chemistry Letters
researchProduct

Phytotoxicity of low-weight carboxylic acids.

2011

Abstract Presence of low-weight carboxylic acids (LWCAs) can be the reason for phytotoxicity of green manures, treated bio-waste or digestates from biogas production applied to soils. As the phytotoxic concentrations of LWCA are poorly known, this work presents data on six acids (C 1 C 6 : formic, acetic, propionic, butyric, valeric, and caproic). Phytotoxicity was measured in acute (72 or 120 h) and subchronic (21 d) assays for seed germination, seedling elongation, and plant growth for garden cress Lepidium sativum and ryegrass Lolium multiflorum . The dose–response relationship was modeled using Weibull model. Results showed a trend that toxicity of LWCA increases with the length of the …

Environmental EngineeringFormic acidHealth Toxicology and MutagenesisCarboxylic AcidsGerminationCaproic AcidLepidium sativumchemistry.chemical_compoundGreen manureLoliumToxicity Tests AcuteEnvironmental Chemistryta218Hexanoic acidbiologyDose-Response Relationship DrugPublic Health Environmental and Occupational HealthGeneral MedicineGeneral ChemistryLolium multiflorumHydrogen-Ion Concentrationbiology.organism_classificationPollutionMolecular WeightHorticulturechemistryAgronomyGerminationSeedlingSeedlingsPhytotoxicityChemosphere
researchProduct